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The effect of rotation on double-diffusive 
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(Received 9 February 1995) 

The effect of rotation about a vertical axis on the linear stability of a salt-stratified 
fluid enclosed in a vertical slot when subjected to a temperature difference between 
the walls is investigated. It is found that for large salinity stratifications there are 
three distinct regimes of instability for different values of the rotation rate. For 
small rotation rates the convection cells resemble the thin, almost flat, convection 
cells predicted by non-rotating theory. The effect of the rotation is to marginally 
destabilize the fluid whilst inducing a small slope in the convection cells along the 
parallel walls. As the rotation rate is increased there is an abrupt change in the 
form of the most unstable convection cells as their aspect ratio and slope parallel 
to the walls both become of order one in magnitude. As the rotation rate is further 
increased there is a second less abrupt transition when the internal Rossby radius of 
deformation based on the vertical scale of the cells becomes of the same order of size 
as the slot width. After this point the slope of the cells increases in proportion to the 
rotation rate. The asymptotic nature of these three regimes is found. 

The effect of rotation on double-diffusive instabilities caused by more general hor- 
izontal temperature and salinity gradients in a salt-stratified fluid is also investigated, 
with particular reference to the case of heating the salinity gradient from a single 
sidewall. This analysis is restricted to the case where the rotation rate is low. 

1. Introduction 
When a stably stratified body of fluid has horizontal temperature and salinity gra- 

dients present, but no horizontal density gradient, it may be unstable to infinitesimal 
disturbances. These instabilities were first noticed in the context of the mixing of 
water masses in the oceans. Stern (1967) showed that for unbounded bodies of water 
with uniform horizontal temperature and salinity gradients, and where the fluxes were 
dominated by salt fingers, the fluid was always unstable to motions that took the 
form of almost horizontal interleaving convection layers. This analysis was extended 
by Toole & Georgi (1981) with the inclusion of viscous effects. The case of fluids 
with uniform gradients when the fluxes are driven by other mechanisms has been 
looked at by McDougall (1985), who assumed that the fluxes were proportional to 
the salinity difference between the convective layers and independent of the layer 
thicknesses, and by Holyer (1983), who assumed the fluxes were driven by molecular 
diffusivities. In all these cases where an unbounded fluid has uniform horizontal and 
vertical compositional gradients the fluid is always unstable and so considerations 
of marginal stability are inappropriate. Instead these studies focused on the fastest 
growing modes of instability. 
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In most applications the assumption of infinite gradients is inappropriate. More 
typically the horizontal gradients are confined to some finite region. Instabilities driven 
by horizontal gradients of finite extent have been studied by numerous authors both 
experimentally and theoretically. These studies come in essentially three categories : 
where the horizontal gradients exist between two parallel walls, where the horizontal 
gradients exist in a finite region between two uniformly stratified bodies of fluid, and 
where the horizontal gradients exist near a single boundary. 

The first of these categories has been studied experimentally by Thorpe, Hutt & 
Soulsby (1969), Chen & Sandford (1977), Paliwal & Chen (1980). This situation 
has been investigated theoretically by these authors and also by Hart (1971, 1973) 
and Thangam, Zebib & Chen (1981). These theoretical investigations considered the 
marginal stability of the system under the assumption that the fluxes were driven 
by molecular diffusivities. Both Thorpe et al. and Hart looked at the case where 
there is a strong salinity stratification. The former made assumptions concerning 
boundary conditions that lead to some simplification, and the latter treated these 
rigorously, showing that the results of Thorpe et al. were the leading-order asymptotic 
approximation. Thangam et al. looked at more general salinity gradients enclosed 
between the walls, and showed that the first mode of instability can be oscillatory 
for weaker stratifications. There have been some more recent studies which fit 
in this category where the stability and nonlinear dynamics of salt-stratified fluid 
in a rectangular cavity with a laterally imposed temperature difference have been 
investigated numerically, for example, by Tsitverblit & Kit (1993). 

The second situation has been studied experimentally by Ruddick & Turner (1979), 
Holyer et al. (1987) and Ruddick (1992). It has also been studied theoretically in the 
context of oceans by Niino (1986) who used the salt-finger flux model of Stern (1967). 
Because of the assumptions made in this flux law, the model always predicts that the 
fluid is unstable, and so just like the infinite gradient models it is the fastest growing 
mode that is considered. 

The last category has been studied experimentally by many people, including 
Thorpe et al. (1969), Chen, Briggs & Wirtz (1971), Chen & Skok (1974), Linden 
& Weber (1977), Huppert & Turner (1980), Huppert & Josberger (1980), Tanny & 
Tsinober (1988, 1989) and Schladow, Thomas & Koseff (1992). This single boundary 
problem has also been investigated theoretically by Kerr (1989, 1990) for situations 
where the wall heating is not too fast, and a quasi-static approximation for the 
evolving background gradients can be made. 

The original motivation for the work of Stern was instabilities that could develop 
between adjacent masses of water in the ocean, and on how these could affect their 
mixing. In the oceanic environment the motions often have a very large horizontal 
length scale and evolve on a long time scale. In such cases the Earth’s rotation 
sometimes plays an important, if not dominating, role. For this reason there have 
been theoretical investigations of the effect that rotation has on the above instabilities 
for models with infinite horizontal gradients. Such studies have been conducted 
for various models of the salt and heat fluxes by Posmentier & Hibbard (1982), 
McDougall (1985) and Kerr & Holyer (1986). In each case they found that where 
the most unstable mode of instability was non-oscillatory in its nature the rotation 
had no effect on the growth rate of the most unstable mode. The principal effect 
of the rotation was to cause the intrusions to develop a slope perpendicular to the 
direction of the horizontal gradients. Worthem, Mollo-Christensen & Ostapoff (1983) 
also included the effect of horizontal shear in their analysis. This shear inhibits the 
growth of modes of instability that have any slope perpendicular to the horizontal 
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gradients, and hence they found that the rotation tended to reduce the growth rate of 
the fastest growing instabilities. Yoshida, Nagashima & Niino (1989) looked at the 
fastest growing modes in a finite region of horizontal gradients between two uniformly 
stratified bodies of fluids. The use of the Stern law for heat and salt fluxes in the 
presence of salt fingers means that in this situation, just as for the non-rotating case, 
the fluid is always unstable. There has been a further experimental and theoretical 
study of the effect of rotation on double-diffusive instabilities driven by horizontal 
gradients by Chereskin & Linden (1986). Their experimental study looked at the case 
of a heated central cylinder in a rotating tank containing a stably stratified salinity 
gradient. Their experiments were mostly concerned with heating rates that were far 
from marginal; however they did notice that the presence of rotation seemed to 
slow down the growth rate of the instabilities and concluded that the rotation was 
stabilizing. In addition they conducted a stability analysis on a salinity-stratified fluid 
contained between two vertical parallel walls with simplified boundary conditions at 
the wall, and with the assumption that there was no structure to the instabilities in 
the horizontal direction parallel to the walls. They found that the effect of rotation 
was to stabilize the fluid. This result contrasts with previously mentioned analyses 
which concerned models with infinite horizontal gradients. These found that the 
rotation did not affect the growth rate of the fastest growing mode of instability, but 
that a slope was introduced into these interleaving layers in a direction perpendicular 
to the horizontal gradients. A corollary of this is that if we assumed that there 
was instead no structure in this direction we would exclude from consideration the 
fastest growing modes of instability, and hence would find that the rotation stabilized 
the fluid. 

The effect of rotation on double-diffusive convection in a horizontal layer has also 
been investigated by Pearlstein (1981). In this case there were no horizontal gradients. 
In an infinite body of fluid with uniform vertical salinity and temperature gradients 
the rotation does not affect the growth rate of the fastest growing mode. However, 
the presence of boundaries alters this result, and Pearlstein found that rotation could 
either stabilize or destabilize the fluid layer, depending on the properties of the fluid. 

In this paper we will look at the effect of rotation on instabilities with finite 
horizontal temperature and salinity gradients while allowing the instabilities to have 
along-wall structure, i.e. allowing variations in the horizontal direction parallel 
to the walls. We will look at the slot problem that was examined by Chereskin & 
Linden, making the same simplifying boundary conditions, but allowing for variations 
horizontally along the walls. We will concentrate on the case where the salinity 
stratification in the fluid is, in some sense, strong and where the fluxes are driven by 
molecular diffusivities. This will allow us to look at the onset of instability as opposed 
to the fastest growing modes, and will enable us to discover what effect the rotation 
has on these critical modes. We find that in general for relatively small rotation rates 
the instabilities observed are essentially perturbations of the most unstable mode 
that is observed in a non-rotating slot, with a vertical size given by the Chen scale 
(Chen et al. 1971). In this case the effect of rotation is to marginally destabilize the 
fluid. We also find that for larger rotation rates there is another branch of solutions 
which corresponds to a local minimum in the heating. Initially this branch is more 
stable than the first branch, but for higher rotation rates still this second branch of 
solution becomes the most unstable and the first branch of solutions ceases to exist. 
This second branch of solutions has a vertical scale that is of the same order of 
magnitude as the width of the slot, and has two sections where different asymptotic 
behaviour is observed. In 0 6 we look briefly at the cases where there are non-uniform 



348 

X 

/ 
Cold 

0. S. Kerr 

J I 

/ 
Hot 

/ 
x =d 

FIGURE 1. Schematic diagram showing the geometry under consideration. 

horizontal gradients in either an unbounded fluid, or in a semi-infinite fluid, and 
when such models are valid. 

2. Governing equations 
We will consider the motion of a stratified fluid enclosed between two parallel 

vertical walls that are a distance d apart. These wall are infinite in extent and located 
in the planes x = 0 and x = d.  The positive z-axis is taken to point in the vertical 
direction, and the y-axis is horizontal and parallel to the walls. The whole system is 
rotating with angular velocity f / 2  about a vertical axis. We will assume that there 
is a horizontal temperature difference of AT applied across the wall with the wall at 
x = d being the hotter. This configuration is shown schematically in figure 1. We 
will also assume that the temperature and salt boundary conditions are such that 
there is a stationary conduction solution to the governing equations. This will mean 
assuming that there is a fixed salinity difference applied across the slot instead of 
using more realistic boundary conditions such as no-flux conditions on the salinity. 
More realistic boundary conditions typically lead to a non-zero velocity in the basic 
background state which complicates the analysis. We will also be concentrating 
on the case of large salinity gradients, in which case these perturbations from the 
stationary conduction solutions examined here are confined to thin regions near the 
walls (see Hart 1971). 

The equations for an incompressible fluid in a frame of reference rotating with 
angular velocity f / 2  about the vertical axis are 

BU 1 
- + f; A u = --Vp + g(aT - PS); + vV’U, 
at Po 

(2.la) 

(2.1 b)  
aT 
- at + tiTx + wT, = ICTV’T, 
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(2.lc) 

v - u  = 0. (2 .14 

Here u = (u,u, w) is the velocity of the fluid, p ,  T and S the pressure, temperature and 
salinity perturbations, g the acceleration due to gravity, v the kinematic viscosity, K T  

and K~ the heat and salt diffusivities, a the coefficient of thermal expansion and p the 
coefficient of density increase with respect to the addition of salt. We are assuming 
that the density of the fluid is given by a linear relation of the form 

P = POU - a(T - To) + P(S - So)), (2.2) 

where To and SO are some reference temperature and salinity, and PO the corresponding 
density of the fluid. We are taking the horizontal background temperature and salinity 
gradients, T,  = AT/d and 3, and the vertical gradients, Tz and s, to be constant. 
For the unperturbed background state to be a solution to the full governing equations 
we will also require that the horizontal background temperature and salinity gradients 
have a compensating effect on the horizontal density gradient in the fluid. This gives 
the relationship between T,  and 3, that 

aTx = ps,. (2.3) 

The basic equations (2.la)-(2. I d )  are linear equations with constant coefficients, and 
so the solutions can be written in the form (u,p,  T ,  S )  = Re { (UO, PO, TO, SO) exp(ik.x + 
At) >, where UO, po, TO and SO are complex constants, A the growth rate and k = (k,  1, m) 
is the wavenumber vector. Substituting such a solution into the equations and elim- 
inating UO, po, TO and So leads to the characteristic equation that must be satisfied by 
k and I for a non-trivial solution to exist: 

+ f2m2(A + K T P 2 ) ( I  + Ksp2) + fgpSx ( K T  - K s )  p21m = 0, (2.4) 
where p2 = lkI2 = k2 + l 2  + m2. 

At this point we will non-dimensionalize the variables. We will use as the im- 
portant length scale the distance across the slot, d, and the corresponding time 
scale d 2 / K T  and velocity scale icT / d .  We will non-dimensionalize the tempera- 
ture and salinity with respect to their respective differences across the slot at any 
given height, i.e. temperature with respect to AT = T,d and salinity with re- 
spect to AS = 3,d = aAT/P. We will also at this point assume that A is 0. 
This means that we are looking for marginally stable solutions where the instabil- 
ity does not first appear as an oscillation. For slots with weak salinity gradients 
Thangam et al. (1981) found that the initial mode of instability could be oscilla- 
tory; however we are concerned with the case of stronger stratification where they 
found that the initial mode of instability had real growth rate. Kerr & Holyer 
(1986) found that in the case of interleaving in an unbounded fluid with constant 
horizontal and linear gradients the most unstable mode had a growth rate that 
was nearly always real. The only cases where the growth rate of the most unsta- 
ble modes were complex corresponded to cases where the vertical gradients had 
a significant destabilizing vertical temperature gradient that was comparable in its 
effect on the density profile to the stabilizing vertical salinity gradient. These are 
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not the cases that concern us here. With these scalings, and setting il = 0, (2.4) 
becomes 

apl2 { a ~ p ’ ~  + (k’2 + l’2)p’20R + k’m’p12a( 1 - z ) H }  

+ f‘2zm12p’4 + f a (  1 - z)Hp’2l’m’ = 0 (2.5) 

where the primes indicate variables that are now dimensionless. Here we have in- 
troduced the dimensionless parameters a = V / I C T ,  the Prandtl number, z = I C ~ / I C ~ ,  

the salt/heat diffusivity ratio, R = g ( z a T ,  - P S Z ) d 4 / ( v ~ T )  a vertical Rayleigh num- 
ber, and H = g u A T d 3 / ( v ~ T )  a horizontal Rayleigh number. Note that although 
the definition of R allows for a vertical temperature gradient we will henceforth 
ignore this term and consider the vertical stratification to be due solely to a salin- 
ity gradient, but remembering that the effect of a vertical temperature gradient 
can be incorporated into the analysis and results in a straightforward way. This 
simplification is only possible when A = 0, and so is not appropriate for the case 
where instabilities are either oscillatory or are growing. The assumption that R is 
only due to a salinity gradient is in order to simplify discussion, and to empha- 
size that we are concerned with situations where the initial mode of instability is 
non-oscillatory. Henceforth we will drop the primes from the dimensionless vari- 
ables. 

We have not mentioned the boundary conditions to be used. Instead of using 
the full physical boundary conditions where the velocity vanishes at the boundary, 
as do the temperature and salinity perturbations, we will use a simplified boundary 
condition that will make the mathematical problem more tractable, and at the same 
time allow the essential physics of the problem to remain. This will allow us to get 
an insight into the mechanisms involved in the full problem. In so doing we are 
essentially following the philosophy behind the adoption of, say, stress-free boundary 
conditions in the study of thermal convection between parallel plates. We will impose 
the same restriction on the solutions, i.e. that there is no fluid flux through the vertical 
walls at x = 0 and x = 1. In order to be able to satisfy this condition for all y and z 
we must, for given 1 and m, be able to find two real solutions to (2.5). This gives us 
the condition that there must be two roots, k- and k+,  that satisfy the condition 

k+ - k- 7 2 ~ .  (2.6) 

This boundary condition has been shown to be the appropriate one to use in the 
case where there is no rotation and the stratification is strong (Thorpe et al. 1969; 
Hart 1971). 

3. Onset of instability 
As we are interested in the onset of linear instabilities, we can express the problem 

as finding, for a given stratification R, the minimum value of H for which non-trivial 
solutions to (2.la)-(2.ld) exist that satisfy the boundary conditions. This is done 
by finding, for given values of 1 and m, the value of H for which the maximum 
and minimum real roots of (2.5), when considered as a polynomial in k ,  differ by 
27c. We then minimize H as a function of 1 and m in order to find the critical 
values of the heating rate for a given stratification, R, and rotation rate, f .  These 
calculations were performed numerically using NAG library routines, and used values 
of a = 7 and z = 1/80 for the Prandtl number and the salt/heat diffusivity ratio. 
Typical results are shown in figures 2-4. The first of these, figure 2, shows the 
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results for R = lo4. In figure 2(a) are shown the values of H as a function o f f  
that have local minima in H with respect to variations in 1 and m. In this case 
there are two branches of solutions that have a small region of overlap for values 
of f in the region of 515.3-555.1. Up to the point of crossing the first branch 
represents a global minimum, and after the crossing the second branch is a global 
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minimum. This shows that the effect of rotation is to destabilize the fluid. On 
the initial branch of solutions this destabilization is not great, corresponding to a 
maximum decrease in the critical value of H of the order of 11% over the whole 
branch. Above a value of f = 555.1 this branch of solutions abruptly vanishes. 
The second branch of solutions shows a stronger decline in H as f increases. How 
this continues to decrease will be discussed in further detail later in this section. 
The corresponding values of the horizontal and vertical wavenumbers, 1 and m, and 
the value of k- are shown in figure 2(b). Initially as f increases, the value of 1 
steadily decreases from 0 in an approximately linear fashion, indicating the gradual 
tilting of the convection cells. The sense of the tilt is shown in figure 6(a). The 
value of m also declines as f increases, indicating a gradual increase in the vertical 
separation of the convection cells. The corresponding value of k- also gradually 
increases. If we look at, say, the velocity component across the slot, u, we see that 
with our boundary conditions this velocity is zero along lines with slope -(k- + n)/m. 
Initially the value of k- is -6.739 indicating that the convection cells slope up 
towards the hot wall. As the rotation rate increases this slope decreases steadily, 
but always remains positive. On the second branch of solutions the value of 1 stays 
almost constant at around -2.2. The value of rn drops abruptly by a factor of 
almost a half from the value on the initial branch, indicating a sudden increase in 
the preferred vertical length scale. The value of k- also jumps on changing from 
the initial to the second branch of solutions. Subsequently it gradually increases, 
but never reaches -n, and so the slope of the convection cells always remains 
positive. 

These trends are repeated in the other two sets of graphs for R = lo6 and R = lo8 
(figures 3 and 4). However as R increases so the region of overlap between the 
two branches increases. In all three cases the curves of minimum H cross over as 
would be expected. A notable point about the variations in 1 and rn is that in all 
three cases 1 settles down to approximately the same value on the second branch of 
solutions, and also the values taken by m are similar. On the first branch the value 
of 1 taken at the termination of the branch is always close to the value of 1 on the 
second branch; however the jump in the corresponding values of rn increases as R 
increases. 

If these results are plotted with logarithmic axes (figure 5 )  further trends become 
apparent. In figure 5(a) it can be seen that as R increases, the value of H varies little 
along the first branch. On the second branch the value decreases. The gradient in this 
initial section is approximately -1, indicating that H is approximately proportional 
to f-'. This branch then goes through a further transition where H ceases to decrease 
and becomes almost constant. This secondary transition in the second branch of 
solutions is also apparent in the other graphs in figure 5(b,c). The curves of m display 
a region where it is approximately constant, before undergoing a transition to a 
regime where it decays as f-'. In all cases 1 is almost constant on this second branch, 
with the curves indistinguishable on this plot as they lie on top of each other. It is 
also clear from these graphs that the minimum value of f  for the second branches of 
solutions is almost identical for all three values of R. 

It is apparent from the above results that there are essentially three regimes that 
occur for large values of R. The first corresponding to the initial branch of solutions 
is characterized by slowly varying values of H and rn, and an 1 that decreases in 
proportion to f .  We will refer to this as the small-f regime. The second regime 
has a steadily decreasing H ,  being proportional to f-', and almost constant 1 and 
m. We will refer to this as the intermediate-f regime. Lastly we have a regime 
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where H and 1 are approximately constant, but m decreases as f-'. We shall refer 
to this as the large-f regime. Representations of convection cells in each of these 
regimes are shown in figure 6. These are all for R = lo6. The first, figure 6(a), 
shows examples of convection cells when the small-f solutions are the most unstable. 
Here the convection cells take the form of thin almost horizontal layers which rise 
slightly in the positive x-direction and in the positive y-direction. This is the same 
sense of slope as found by Kerr & Holyer (1986) for interleaving instabilities in an 
unbounded fluid with linear gradients. The second representation, figure 6( b), shows 
the most marginally stable rolls for f = 5000. This is in the intermediate regime. 
Here the convection cells are no longer flat, but form almost round cylinders with 
an 0(1) slope in the same direction as before. Lastly, figure 6(c)  shows convection 
cells in the large-f regime. Now the convection cells form almost vertical cylinders. 
Superimposed on each of these are some streamlines of individual fluid elements. In 
the small-f case the convection motion is almost confined to a vertical plane that is 
oblique to the slot. In the intermediate-f regime the fluid element is confined to a 
plane that slopes slightly down from the hot wall to the cool wall. Lastly, the large-f 
case, the motion of a fluid element is confined almost entirely to a horizontal plane 
with very small slope. 

The various transitions that have been observed here will be examined in more 
detail in the next section where the asymptotic behaviour of all three regimes will be 
examined. The physical interpretation of some of these results will also be given in 
0 4 and the subsequent section. 

4. Asymptotics in the strong stratification limit 
The numerical solutions in the previous section show how, as R increases, the 

structure of the solutions becomes more clearly defined with three distinct regions of 
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F~GURE 6. Representation of the marginally stable convection cells for R = lo6 in a cell of length 
2l/* in the y-direction and 2 in the z-direction. These show cells on (a) the small-f branch of 
solutions, with f = 1200, (b )  the intermediate-f branch of solutions, with f = 5000, and (c) the 
large-f branch of solutions, with f = 500000. Paths of fluid elements are also shown. 

behaviour as f varies : the small-, intermediate- and large-f branches of solutions. 
In the following subsections we will look at each of these three regions of behaviour 
separately. 

4.1. Small-f branch 
In the case of strong stratification, R B 1, the observed instabilities, both experimen- 
tally and theoretically, for the non-rotating case consist of almost horizontal thin 
convection cells (Thorpe et al. 1969; Hart 1971). One can then make the assumption 
that m B k ,  1, and so vertical diffusion is more important than horizontal diffusion. If 
we assume as a result that we can ignore the horizontal derivative in the diffusion 
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terms (i.e. V2 = a2/az2)  we can re-write (2.5) as 

om2 {ozm’ + (k2  + l2)m2oR + km3a(l - z ) H }  + f2zm6 + fo(1 - z)Hm31 = 0. (4.1) 

With this approximation the characteristic equation is now only a quadratic in k.  
Before we progress further, some simplification in the algebra results if we rescale the 
variables to match those used by Kerr (1989) in the analysis of instabilities in a strong 
salinity gradient under the influence of heating at a single sidewall. The scalings used 
there make use of the vertical length scale 

(1  - T ) ~ A T  
h =  = ( 1  - T ) H / R .  

- P K  
This is the Chen scale (Chen et al. 1971) with an additional factor of ( 1  - z). The 
appropriate time scale for the problem is now the diffusion time across this length 
scale and not over the width of the slot. With these new time and vertical length 
scales the rotation rate and the vertical wavenumber, m, are rescaled to give 

( 4 . 3 ~ )  f = fh2/d2 = f (1 - z )2H2/R2,  

and 

f i  = mh/d = m(1-  z ) H / R .  (4.3b) 

With these rescalings the strength of the lateral heating with respect to the vertical 
stratification can be described with a single non-dimensional number, Q, defined by 

(1 - z)6g(aAT)6 - (1 - T ) ~ H ~  
zRs ‘ 

Q =  5 -  
vKsd2 (-PSz) 

The physical basis for this parameter is described in Kerr (1989). 
Using the above rescalings (4.1) becomes 

f l  fi6 f2fi2 
k2 + l 2  + f i k  + 7 + - + - = 0. 

om Q 02Q 

(4.4) 

(4.5) 

We can solve this quadratic in k, and so the condition (2.6) that the roots differ by 
271 can be evaluated explicitly to give a relationship between Q, f, I and 6: 

or 

(4.7) 
f i 2 ( f i 4  + f2/o’) 

= &/4 - (712 + 12 + f l / (o f i ) ) .  
For marginal stability we want to minimize Q with respect to variations in 1 and fi. 
Differentiating (4.6) with respect to 1 and f i  gives the further pair of equations to be 
satisfied at the minimum: 

(4.8) 
0 = - 2 1 - -  f 

o6’ 

(4.9) 

We can use (4.8) to eliminate 1 from both (4.6) and (4.9) and hence obtain a pair of 
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equations for Q in terms of f i :  

4fi4 ( f i 4  + (f"/a)2) 4fi4 (3fi4 + (f"/o)2) 

f i 4  - (f"/o)' 
- - (4.10) 

These can be rearranged to obtain a quadratic in f2/02 in terms of f i  which has the 
solution 

p / o 2  = f i 2 ( n 2  - f i 2 )  k fi2(4712fi2 + n4)1/2. (4.1 1)  

The requirement that f2  2 0 tells us that we must take the positive root and 
additionally that 0 < fi2 < 6n2. We can also see that f2  must have a maximum for 
some f i  between 0 and 61/2n; this occurs when 

fi2 = (i + 3lI2) n2 NN 5.6482, (4.12) 

Q = fi4 + ~ 2 / ~ 2  - 4n2fi2 

with corresponding values of the other parameters given by 

f"z/02 = i (i + 3112) 7c4 NN 21.732, (4 .13~)  

Q = 3 (45 + 26 x 3lI2) n4 = 26310, (4.13b) 

1 = -n/21/2 = -2.221. (4.13~) 
There are no solutions that correspond to values off" greater than (4.13~) and so this 
gives the maximum rotation rate for solutions to exist on this branch of solutions. 
The ratio between the above value of Q and the critical value for a non-rotating slot, 
432n4, is (45 + 26 x 3112)/144 NN 0.6252. This corresponds to a ratio of temperature 
differences of 0.9247. So, although the rotation enhances the instability, the amount by 
which the critical temperature difference is depressed is less than 8% for all rotation 
rates which are less that the critical rate given by (4.13~). 

The critical value of f  corresponding to (4.13~) and the associated values of rn and 
H are 

(4 .14~)  

(4.14b) 

) l16 .  (4.14~) 
3 (45 + 26 x 3'j2) n4zR5 

There are no solutions for values off" larger than the critical value that also satisfy 
the condition that the value of Q is a minimum with respect to variations in 1 and fi. 
For values off" less than this maximum figure, we have found in (4.11) two values of 
f i  where Q is stationary. The larger of the two corresponds to the minimum of Q that 
we require, the smaller value of f i  corresponds to a saddle point. It would perhaps 
make the situation clearer if we again consider Q as a function of 1 and fi. The first 
thing to note is that the denominator of (4.7) is zero along the lines given by 

A2/4 - (n2 + l2  + $i/(ofi)) = 0. (4.15) 

These lines of singular Q also divide the ( I ,  fi)-plane into regions where Q is either 
positive or negative. Negative values of Q do not correspond to situations which 
are physically meaningful. Q also changes sign across the line f i  = 0, where Q = 0. 

H = (  (1  - t ) 6  
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F~GURE 7. Contour plots of Q in the ( I ,  @-plane for (a) f = 100 and (b)  f = 150. In both cases Q 
is singular along the heavy lines, and zero along the I-axis. The continuous contours are in steps of 
2500 and the dashed contours have separations of (a) 100 and (b) 500. 

There are two possible regimes depending on the magnitude off", which are shown 
in figure 7. In the first of these, figure 7(a), for lower values off" there are two 
separate regions of positive Q for 5 > 0, while for larger values o f f  the two regions 
join, and instead there are two regions with negative Q. In the first case Q has 
a local minimum in the region to the top of the figure where Q is positive. The 
second stationary point is a saddle point located in the central region where Q is 
negative. The second region of positive Q located adjacent to the negative 1-axis has 
no stationary points: the values of Q increase monotonically from 0 along the l-axis, 
becoming infinite as the singular line is approached. This region will be discussed 
further in the next subsections. Here, we should just note that the approximations 
made in this subsection break down in this region. 

For larger values off" the two regions of positive Q join, and the second stationary 
point now lies in the region of positive Q. It is still a saddle point, separating what 
is now a local minimum in the positive region from the global minimum along the 
I-axis. When the critical value of f" is reached this local minimum and the saddle 
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point combine, leading to a situation where there are no stationary points, and the 
region of positive Q slopes down towards the l-axis where the approximations made 
in this subsection are not valid. 

The crossover between the two regimes of figure 7 occurs when f" = 207c2, at which 
point (4.15) factorizes to (f i  + 21)(fi2 - 2lfi - 47c2)/(4fi) = 0. 

The correspondence between this asymptotic solution and the numerical results 
calculated previously are shown in figure 8. This shows good agreement, which 
improves for larger values of R. 

4.2. Large- f branch 
The second clearly defined limit occurs when f is large. In this case an examination 
of (2.5) shows that the primary balances that occur as f -+ co require that H = O( l), 
1 = 0(1), and m = O(f-'). The requirement that there are two roots for k that 
differ by 2x means that k = 0(1) also. This differs from the large rotation rate 
limit for interleaving in an infinite fluid where k = O(f-'). With these balances the 
leading-order approximation to (2.5) is 

a(k2 + 1 2 )  {a@ + P)4 + a(k2 + 12)2R} 

+ f2zrn2(k2 + 1 2 ) 2  + fa(1- z)Hmd(k2 + 12) = 0. (4.16) 

575 580 585 

L.. ..... 

I 
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Note that only even powers of k appear in this equation and thus real roots will occur 
in pairs differing in sign but not magnitude. The requirement that roots differ by 2n 
tells us that here the roots we require are fn .  Incorporating this into the above, and 
defining h = f m, we find 

c2z(n2 + 12)4 + o(z2 + Z2)2R + zh2(z2 + 1 2 )  + o(1- z)HAl = 0. (4.17) 

Since we have the constraints that for marginal stability aH/al = 0 and d H / a A  = 0 
we have the additional pair of equations 

802z1(7r2 + 12)3 + 41(n2 + 12)02R + 21h2z + o(1 - z)Hh = 0, (4.18) 

and 
2hz(n2 + Z 2 )  + o(1 - z)H1 = 0. (4.19) 

We have not as yet used the assumption that R is large. If we do so we find that the 
primary balance as R + 00 is between R and A, and the the effect of the 02z(n2 + 12)4 
term in (4.17) and the corresponding terms in (4.18) and (4.19) can be neglected. If 
this is done the resulting equations can be put in matrix form: 

0 (4.20) 
41 

For non-trivial solutions to exist for this equation the determinant of the matrix must 
be 0. This gives the requirement that 

l2 = 71212. (4.21) 

If we require h to be positive then we must take the negative root. The vector in 
(4.20) will be a corresponding eigenvector of the matrix, and so the elements of the 
vector are in the ratio 

1 : 1 : 3n2lI2, (4.22) 
giving 

1 = -n/21/2, 

and 

(4.23~) 

(4.23b) 

(4.23~) 

The lines corresponding to the asymptotic values of m and H for R = lo6 are shown 
in figure 8, showing good agreement with the previous calculated values for large f. 

4.3. Intermediate- f branch 
One of the terms of (2.5) involved in the large-f asymptotic behaviour of the previous 
subsection was that involving f ’. Since the terms in the coefficient off are all at most 
O(1) quantities, this leaves us with the problem that for this term to be important f 
itself must also be large when R is large. 

Looking at the logarithmic plots of figure 5 we see that there is a region on the 
second branch of solutions where the curves are approximately linear, but before 
the large-f asymptotic behaviour described above sets in. In this region it is clear 
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FIGURE 9. The large-f (- - -) and basic intermediate-f ( - -  --) asymptotic values of H and 
m as functions of f superimposed on the full solutions for R = lo6. These show the transition 
between the two regimes and this branch of solutions. There is no corresponding transition in k- 
or 1 as they remain approximately constant though both regimes. 

that 1 and m are approximately constant, while H decreases as f-'. If we arbitrarily 
neglect the quadratic f 2  term in (2.5) and look at the primary balances for large f 
we see that indeed the leading-order behaviour required is 1 = 0(1), m = 0(1) and 
H = O(f-'). Again the boundary conditions require that k = O(1). Just as in the 
large-f asymptotics we can assume, for large R, that the term not involving either 
Rayleigh number or f can be neglected. This leaves 

a(k2 + 1 2 ) p 2 ~  + f(1- r )Hml= 0. (4.24) 

Again, this only has even powers of k ,  and so the condition that k+ - k- = 2n again 
gives k2 = n2. Finding the minimum value of H with respect to variations in 1 and rn 
gives the basic intermediate-f asymptotic results that 

1 = --71/2-1/2, ( 4 .25~)  

m = (3/2)'l2n, (4.2527) 
and 

(4.25~) 

Comparing the above results with the large-f asymptotics we can find where the 
transition between the two regimes occurs. If we find the value o f f  at which the 
predicted values of m and H in the two regimes are equal we find that it occurs when 
f = ~ ( R / T ) ' / ~  for both cases. Hence the transition occurs when, in dimensional terms, 
the rotation rate is a factor of (a/r)1/2 greater than the buoyancy frequency. This 
transition, and the agreement with the asymptotic theory, are shown in figure 9. 

The plots of the critical values of H shown in figure 5 all show that this intermediate 
branch of solutions terminates for values o f f  just below 580, and that as f reduces 
towards this value the values of k- diverge from -71. The above analysis does 
not reproduce this feature. However, with H growing as f-' as f gets smaller 
we can see that the term in (2.5) involving H that we have neglected in both 
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the large- and the intermediate-f asymptotics will become more important. If we 
include this term in the intermediate-f analysis for large R then instead of (4.24) we 
have 

o(k2 + 12)p2R + akmp2( 1 - z)H + f (  1 - z)Hml = 0. (4.26) 

Note that now an odd power of k has been introduced, and so we no longer have 
the simplification that kk = kn .  It should also be noted that if (4.26) is divided 
by OR then the physical parameters only appear here in the combinations f /a  and 
(1 - z ) H / R ,  and so the results obtained by minimizing H once for a given f / O  can be 
applied to other values of the parameters with suitable rescaling. The optimum value 
of H was found numerically subject to the constraint (4.26) and that the two roots 
k+ and k- differed by 271. The results are shown in figure 8 with the full results for 
R = lo6 superimposed. It is clear that there is good agreement between the results 
from the full characteristic equation (2.5) and the asymptotic values. With the extra 
term the asymptotic solutions cease to exist at a critical value o f f  which was found 
to be 

f = 82.550. (4.27) 

This agrees with the results found for the full system with o = 7 and R = lo8, say, 
where the intermediate branch was found to exist down to f = 577.9. 

There are two main points to note concerning the intermediate-f branch of solu- 
tions and how its terminal point relates to the small-f branch of solutions. Firstly 
the two branches cross over in all the above examples, and so there is a value of 
f at which the most unstable mode will change from being one associated with 
the small-f branch to one associated with the intermediate-f branch. Secondly, 
we note that we can use these results to show when the two branches of solu- 
tions cease to overlap, and hence this whole asymptotic structure must cease to 
exist. 

If we take the result (4.25~) for the critical value of H on the intermediate branch 
of solutions and find when it takes the corresponding value to that obtained in the 
non-rotating slot (which is correct to within 8% for the whole small-f branch) we 
find that the two branches will cross when 

(4.28) 

The terminations of the small- and intermediate-f branches are given by (4.14~) 
and (4.27) respectively. These are equal when 

f” (1 - 2)2H2 

f R2 
= 0.2632. - - -  (4.29) 

Again using the critical values for the non-rotating case gives the minimum value for 
R for which the two-branches overlap as 

R = 2 307 0002. (4.30) 

For the value z = 1/80 that we have been using, this gives R = 28 840. This is more 
than the value of R = lo4 for which we found that there were the separate branches 
of solutions, but it is clear from figure 5 that for this value of R the intermediate-f 
solutions did not really exist. However, this value does give the correct order of 
magnitude for the termination of the two-branch structure. 



362 0. S.  Kerr 

5. Primary balances for large R 
Having found the various asymptotic behaviours in the previous section it is 

instructive to determine which terms in the governing equations give rise to the 
various asymptotic regimes, and so identify the balance of forces which have a role 
in the dynamics of double-diffusive instabilities in a rotating slot. 

For the case of the small-f branch of solutions the primary simplification occurs in 
the difference in the vertical and horizontal length scales. The vertical scale is given 
by the Chen height, while the horizontal scale is given by the slot width. This leads 
to the simplification in the governing equations (2.1~-d) that the diffusive fluxes are 
primarily in the vertical direction and so we can use the approximation V2 = a2/dz2. 
Further simplification can also be made when f is small. With both u and 1 being 
of order f in magnitude one can simplify the problem further by ignoring the O(f2) 
terms which will result in the y-component of the momentum equation (2.1~)  being 
the only one that has any terms that are not also present in the non-rotating case. 
This will then give an equation for finding u given the non-rotating solution and 
the along-wall component of the wavenumber, E .  However to find the value of I 
corresponding to the most unstable mode one would also have to examine the O(f2) 
balances. This is not done here. 

One important balance that can occur in a rotating system is a geostrophic balance 
between horizontal pressure gradients and the Coriolis forces. This occurs when the 
length scales of the motions exceed the internal Rossby radius of deformation (see, for 
example, Gill 1982). The Rossby radius in a uniformly stratified fluid is determined 
by the vertical length scale of a disturbance. In dimensional units the Rossby radius 
for a disturbance of height h is 

where N 2  = -g (dpldz) / P O  is the Brunt-Vaisala or buoyancy frequency (Rayleigh 
1883). Thus one of the important considerations in this problem is whether the 
Rossby radius for a given disturbance is of a similar size to the slot width. For 
disturbances that are limited to the Chen scale this radius is equal to the slot width 

Lh = N h / f  (5.1) 

when the rotation rate is given by 

In non-dimensional terms appropriate for the small-f 

(5.2) 

branch this is equivalent to 

(5.3) 

This is the order of magnitude at which the small-f branch of solutions terminates. 
The simplifications involved in the intermediate branch of solutions concern the 

z-component of the momentum equation, (2.1~). If we replace it with the simple 
relationship 

0 = g ( a T  - PS)  (5.4) 
while leaving all the other governing equations unchanged, then the characteristic 
equation that would be obtained is (4.26). Thus in this intermediate branch of solutions 
the leading approximation from the z-component of the momentum equation is that 
there is no density perturbation. 

If one assumes that the vertical length scale is comparable to the width of the slot 
then the non-dimensional rotation rate at which the Rossby radius is the same as the 
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RGURE 10. Diagram indicating the vorticity for the intermediate-f solutions. This is viewed from 
the hot wall. The @ indicate regions where the fluid is going away from the hot wall, while the 0 
indicate regions where the fluid is coming towards the hot wall. See text for discussion. 

width of the slot is given by 

This corresponds to the transition from the intermediate- to the large-f branch of 
solutions and so for the intermediate-f branch of solutions there is no geostrophic 
balance. If one looks at the horizontal momentum equation we see that there is 
still a balance between the generation of vorticity due to vortex stretching and its 
dissipation due to viscosity. 

As a parcel of fluid moves from the hot salty wall towards the cooler fresher wall 
it will lose its heat faster than it will lose its salinity. Thus it will become denser. 
As (5.4) requires that there are no density perturbations, it must sink to a region of 
denser fluid. Similarly, parcels of fluid moving towards the warmer saltier wall must 
rise. If one considers periodic convection cells up a wall (see figure 10) then in the 
region below an area where the fluid is moving towards the warmer saltier wall (A) 
and above a region where it is moving away from this wall (B) the fluid elements will 
be stretched in the vertical direction. Thus vertical vorticity with the same sense of 
rotation as the system as a whole is being generated in this region. For positive f 
this will lead to the fluid circulating in an anticlockwise direction when viewed from 
above. This will tend to make fluid on either side of this region of vortex stretching 
circulate in the directions shown in the figure at D and E. Similarly, if one considers 
the fluid below a region where the fluid is moving away from the saltier warmer wall 
(B) and above a region where it is moving towards the hotter wall (C) then vorticity 
of the opposite orientation is generated as shown. When these results are combined it 
shows that the slope of the rolls along the wall will be up in the positive y-direction 
for positive f as shown. This is the orientation that was shown in figure 6.  

Consideration of this balance between the generation of vorticity by this means and 
by viscous dissipation shows why the intermediate-f branch of solutions terminates 
when it does for lower values of f .  If a typical velocity in a convection cell is U, 

f 2  = O R .  (5 .5)  
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then the rate of stretch per unit length in the vertical direction will scale as U / d  
for disturbances of the same vertical scale as the slot width. Thus the rate at which 
vorticity is added scales as f U / d .  However, the typical vorticity will scale like U / d ,  
and so the rate at which vorticity is lost is v U / d 3 .  For disturbances to continue to 
exist we must have the rate of generation of vorticity being greater than the rate it is 
dissipated, or 

or 
V 

f > - &  (5.7) 

This is indeed the balance that was observed in the results of $4.3 where the non- 
dimensional value of f at which the intermediate branch of solutions ended was 
found to be proportional to the Prandtl number as (5.7) would imply. 

We can also use a mechanistic argument to give the correct scaling for the critical 
temperature difference for this branch of solutions. If we consider a parcel of fluid 
that is displaced horizontally by a distance 6 x  towards the hot wall it will find itself 
in a region where the average temperature is approximately d x T ,  = d x A T / d  hotter 
than its original temperature. It will gain heat and so rise by a distance 

62 w GxaAT/(-PS,d)  (5 .8)  

in order to be in fluid of its own density (because of the large difference in the 
diffusivities of heat and salt the diffusion of salt can effectively be neglected here). 
Conservation of angular momentum tells us that if a column of fluid is stretched or 
compressed along its axis of rotation then the ratio between its vorticity, o, and its 
height, h, remains constant. If we assume a vertical periodicity of P ,  the change in 
the vorticity of the column below the fluid parcel will scale according to 

f / p  = ( f  + 6 @ ) / ( P  + d z ) ,  (5.9) 

giving 

6 0  w f G z / P .  (5.10) 

This will induce a typical horizontal velocity of order uo - 6wd  in this region. Viscous 
dissipation of a parcel of fluid at this higher level will mean that any velocity will 
decay approximately as du/dt - -vu/d2 if the horizontal scale is smaller than the 
vertical scale, or du/dt - - v u / P 2  if the vertical scale is the smaller. Integrating 
twice with respect to time gives a typical horizontal displacement of 6x’ = uod2/v, or 
6x’ = uoP2/v if the vertical scale is smaller than d.  Combining all these scales gives 
6x’ - f 6 z d 3 / P v  if P > d and 6x’ - f GzdP/v  if P < d.  Since the former is increased 
by reducing P and the latter by increasing it, it is clear that 6x’ will be maximized 
when P and d are of similar size, giving 

6x’ - f d 2 6 z / v .  (5.11) 

This horizontal displacement will induce motions in the original layer by the same 
mechanism, and so for self-sustaining motions we would require that 6 x ’ / 6 x  > 1. 
From the above argument we can find the scaling of this ratio, 

6 ~ ‘ / 6 ~  - a A T f d / ( - f i S , v )  = fH/oR, (5.12) 

and so we would expect that for an instability to be self-sustaining the critical value 
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of H would scale as aR/f.  This is the scaling found in the previous intermediate-f 
branch analysis of $4.3. 

For the large-f branch of solutions the vertical component of the wavenumbers, m, 
becomes small as the rolls align themselves with their axes becoming more vertical. 
This leads to the exact opposite to the small-f branch of solutions in that in the 
diffusion terms the fluxes in the horizontal directions dominate, while those in the 
vertical direction can be ignored. Hence we can approximate V2 NN a2/dx2 + a2/dy2. 
In the z-momentum equation the viscous term can again be ignored, but this time 
the vertical pressure gradient term must be retained, giving 

1 a P  
Po 8.2 

0 = --- + g(aT - P S ) .  (5.13) 

Thus the pressure is given to leading order by the hydrostatic approximation. This 
large-f branch of solutions differs from the intermediate-f solutions in that the Rossby 
radius for the convection cells is comparable to the slot width. In such circumstances 
the balance between the horizontal pressure gradients and the Coriolis force comes 
into play, leading to a more complex interaction than in the intermediate-f case. 

6. Instabilities driven by varying horizontal gradients 
In this section we derive the stability criteria for convection in the case where there 

are variable horizontal temperature and salinity gradients. Kerr (1989) showed that 
for large vertical salinity gradients it is possible to make a quasi-static assumption 
based on the observation that in the non-rotating case the instabilities grow on a time 
scale based on the thermal diffusion time over the Chen scale, while the background 
gradients evolve over a time scale based on the diffusion time over the horizontal scale 
of the thermal anomaly. From the discussion in the previous section it is clear that for 
both the intermediate- and large-f branches of solutions, horizontal diffusion plays 
an important role in the onset of convection, and so a quasi-static assumption which 
requires that horizontal diffusion is negligible will break down. For these reasons 
we will only derive the governing equation for strong stratification and low rotation 
rates. 

For more general horizontal temperature gradients we can no longer assume that 
at marginal stability the growth rate L is zero. Instead it will in general be imaginary. 
However, we can still assume for strong vertical salinity gradients that at leading 
order the background state has no horizontal density gradient, i.e. the horizontal 
temperature and salinity gradients are compensating. Making the same assumptions 
that were made for the small-f branch of solutions, the non-dimensional governing 
equations become 

( ia  + afi2)u - fv = -p’, (6 .1~)  

( i6  + afi2)v + fu = -ilp, (6.lb) 

0 = -ifip + -(T Q - S ) ,  1-7  
(6.1~) 

( ia  + f i 2 ) ~  + u ~ ‘ ( x )  = 0, (6.ld) 

( ia  + zfi2)S + uF’(x) - (1 - z)w = 0, (6.le) 

where primes denote derivatives with respect to x. The imaginary growth rate, 6, has 
a tilde to make it clear that this non-dimensional frequency is scaled according to the 

u’ + ilv + ifiw = 0, (6.1fl 
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time scale based on the Chen height and not the slot width. Note also that just as in 
the case of the small-f equations for large values of R, the viscous diffusion term, and 
also the time-derivative term can be neglected in the vertical momentum equation. 
Again the primary balance in this equation gives the hydrostatic approximation. 

If we define r ( x )  by 

(2 - 1 2 )  r ( X )  = w(x) 

then (6.la)-(6.1j) can be reduced to a second-order differential equation: 

I f f  = 1 = 0 this equation simplifies to the adjoint of equation (3.20) of Kerr (1989). 
At the wall, the boundary condition that T(x) must satisfy corresponds to no fluid 
flux through the wall (u = 0), and is 

r ( X )  = 0. (-,A dx + i6+afi2 . 

If the gradients are located in an unbounded fluid with the horizontal gradients 
decaying in the far field then the appropriate boundary condition in this far field is 
that r + 0. 

For a constant gradient this problem reduces to that considered earlier in the 
small-f asymptotics for large R. 

This eigenvalue problem can be solved numerically using standard techniques for 
given 1 and f i  to give the corresponding Q and 6. As before we can then minimize Q 
with respect to variations in 1 and f i  to find the marginally stable mode. The results 
of such a calculation are shown in figure 11, showing Q, 1, f i  and Q as functions off” 
that were calculated for an error function temperature profile F(x) = erfc(x/2). The 
results here are qualitatively similar to those obtained for a slot in the small-f regime. 
The differences are that there is now a drift of the instabilities down the wall implied 
by 6 > 0, and 1 is now positive since the horizontal temperature gradient at the wall 
is negative instead of being positive as was assumed before. The critical value of Q 
decreases as f” increases, and then the branch of marginally stable solutions vanishes 
at a critical value o f f .  

As with the case of a laterally heated slot, the existence of all of these solutions is not 
necessarily significant since the solutions are local. For larger values off” it would be 
expected that there are other modes of instability corresponding to the intermediate- 
and large-f limits found in the vertical slot that would be more unstable. The above 
analysis relies on the difference between the time scale for the growth rate of the 
instabilities and the time scale for the evolution of the background gradients. The 
former is based on the short Chen length scale, while the latter is based on the longer 
slot width. The secondary branch of solutions for the slot, with its intermediate- 
and large-f regimes, has a time scale for the evolution of the instabilities that scales 
with the slot width. Thus both the instabilities and the background gradients will 
evolve on a similar time scale and so their investigation will not be accessible using 
a quasi-static approximation. 
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FIGURE 11. Values of Q, fi, 6 ( - - - - - ) and 1 for marginal stability for a rotating salinity gradient 

heated from an isolated vertical wall assuming an error function temperature profile. 

7. Conclusions 
We have investigated the marginal stability of a rotating fluid with a vertical 

salinity gradient in a laterally heated slot. Using simplified boundary conditions, 
we have shown that in the limit of strong stratification there are three different 
regimes for the onset of instability. The first of these, referred to here as the small-f 
regime, is essentially the same mode of instability that has been identified before 
in a non-rotating frame of reference, but with modification due to the effects of 
rotation. Rotation has a destabilizing effect on these instabilities, although the effect 
is not strong. The rotation also caused the almost horizontal flat convection cells to 
develop a slope in the horizontal direction parallel to the walls. This slope mimics 
that predicted for the case of double-diffusive interleaving in an unbounded fluid with 
constant horizontal and vertical temperature and salinity gradients. The vertical scale 
of this mode of instability is governed by the Chen scale. This branch of instabilities 
terminates when the Rossby radius based on this vertical scale becomes comparable 
to the width of the slot. 

The first mode of instability is not always the most unstable mode, the other two 
modes may be more unstable. These other modes together form a continuous branch. 
The vertical scale of this branch is not limited by the Chen scale and the horizontal 
component of the wavenumber parallel to the vertical walls is almost exactly --n/2lI2 
for all values o f f  where these modes exist. The first of these two modes, referred 
to here as the intermediate-f branch of solutions, starts when the diffusion time of 
viscosity across the slot is comparable to the rotation rate. This convection mode is 
characterized by, to leading order, order-one slopes of the convection cells along the 
slot and no density perturbations. The motion of fluid elements is confined to almost 
horizontal planes which gently slope across the slot. The vertical motions in this plane 
lead to vortex stretching, which generates the vorticity required to drive the motions. 
As the rotation rate becomes stronger the Coriolis forces become more important, 
and when the Rossby radius based on a vertical scale comparable to the slot width 
becomes of a similar magnitude to the slot width itself the dynamics undergo a 
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further change. At this point horizontal density gradients can be supported, and the 
circulatory motions can be maintained with geostrophic balances. As the rotation 
rate increases the convection cells become more vertical, as would be expected from 
the Taylor-Proudman theorem. 

The transition from the intermediate- to the large-f branch of instabilities occurs 
when the Rossby radius based on a vertical scale comparable to the slot width is 
of the same size as the slot width, while the small-f branch of solutions always 
terminates when the Rossby radius based on the Chen length scale is comparable to 
the slot width. As the Chen scale is assumed here to be less than the slot width this 
means that the small-f branch of solutions will always terminate before the large-f 
branch of solutions begins. Thus, as the rotation rate increases, the transition from 
the small-f branch will always be to the intermediate-f branch. So the form of the 
most unstable mode will change sharply from thin almost horizontal convection cells 
to cells with order-one aspect ratios and order-one slope parallel to the walls. The 
value of f  at which this transition occurs is proportional to (R/7)'l6.  

The work presented here is related to the results of Yoshida et al. (1989) in their 
investigation of the influence of rotation on intrusive instabilities in a finite front 
when the salt and heat fluxes are dominated by the presence of salt fingers. With 
their model of the fluxes the front is always unstable, and so they looked at the 
fastest growing modes of instability. They too noted an abrupt jump in the vertical 
periodicity of the fastest growing mode as the rotation rate increases, corresponding 
to the transition between the small-f and intermediate-f branches of solutions found 
here. Because their flux model only accounts for fluxes in the vertical direction, 
and not the horizontal direction, there is no constraint on the horizontal scales 
due to increasing dissipation on smaller scales. This results in their model allowing 
the horizontal wavenumber, 1, to increase without limit as f increases. Given the 
importance of horizontal diffusion in the intermediate-f and large-f branches here 
this may well indicate a limitation in the applicability of their model for larger values 
of f. However, the initial effects of rotation and the termination of the modes 
corresponding to the small-f branch of solutions found here would be well modelled 
in oceanographic situations where their flux laws are appropriate. 

The direct application of these results to the experiments of Chereskin & Linden 
(1986) has to be done with caution for several reasons. Their experiment was in a 
different geometry, a heated circular cylinder in a large tank. Thus the analysis of 
96 that can be applied to a semi-infinite body of fluid would be more appropriate. 
But the analysis in this geometry cannot be applied to the intermediate- and large-f 
branches of solutions as the quasi-static approximation cannot be applied. Also the 
system is not free to select any value of the horizontal wavenumber I ,  but only those 
that are compatible with a periodicity of the circumference of the cylinder. Thus the 
initial effect of the rotation would be, as the analysis of Chereskin & Linden suggests, 
to stabilize the fluid. In addition their observations are of finite-amplitude instabilities 
and not the infinitesimal instabilities considered here. It is known (Hart 1973; Kerr 
1990) that in the non-rotating case such instabilities are likely to be subcritical, and 
so the observed instabilities may not closely resemble the prediction of the linear 
analysis. In addition their experiments were relatively rapidly heated, and so at the 
initial onset of instability the growth rate of the background horizontal temperature 
and salinity gradients will be comparable to the growth rate of any instabilities and 
so any prediction based on the assumption of steady background gradients must 
be made with caution. With these reservations in mind we should only look for 
qualitative agreement between the theory presented here and their experiments. 
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In the experiments of Chereskin & Linden the values of the vertical Rayleigh 
numbers using their definition varied from 4 x lo4 to 2.37 x lo7. Their defini- 
tion differed in using the vertical Chen scale and not the horizontal extent of the 
thermal gradients used here. Since the horizontal extent of the intrusions tends 
to be larger than the vertical extent this would tend to imply that the vertical 
Rayleigh number of the experiments according to our definition would be appre- 
ciably greater than their values, and as such we are clearly in the large-R regime 
that we have considered. If we estimate the dimensional value of the rotation 
rate at which the transition from the small-f branch to the intermediate-f branch 
occurs from (4.28) we find that it occurs at around 0.3s-’. Thus their rotating 
experiments should be in the regime where the instabilities are strongly affected 
by rotation. One of the predictions of the linear analysis is that the instabilities 
should have a large slope in the horizontal direction along the wall. In their ex- 
periments they noted that “dye observations indicate the layers spiral rather than 
merely slant downwards”. They also noted that for larger rotation rates the ver- 
tical scale of the intrusions increased as the rotation rate increased. In some of 
their experiments the rotation rate did exceed the buoyancy frequency, but never 
by a factor of (o/z)’/~. So although the transition point to the large-f regime 
was never reached some of their experiments did get close enough for the initial 
trends to be observed, in particular the increase in the vertical length scale of the 
instabilities. 

The investigation of the influence of rotation about a vertical axis on the double- 
diffusive instabilities in a vertical slot has shown how the effect of the rotation can 
become dominant even before the rotation may be anticipated to play an important 
role on the basis of arguments concerning the importance of the Rossby radius. This 
influence of the rotation on the interleaving instabilities will be important in many 
situations not readily amenable to a linear stability analysis based on the assumption 
of a steady background state, such as interleaving instabilities at fronts or at single 
side boundaries. Any analysis of such configurations would have to take into account 
the temporal evolution of the background temperature and salinity gradients. 

REFERENCES 

CHEN, C. F., BRIGGS, R. A. & WIRTZ, D. G. 1971 Stability of thermal convection in a salinity gradient 

CHEN, C. F. & SANDFORD, R. D. 1977 Stability of time-dependent double-diffusive convection in an 

CHEN, C. F. & SKOK, M. W. 1974 Cellular convection in a salinity gradient along a heated inclined 

CHERESKIN, T. K. & LINDEN, P. F. 1986 The effect of rotation on intrusions produced by heating a 

GILL, A. E. 1982 Atmosphere-Ocean Dynamics. Academic Press. 
HART, J. E. 1971 On sideways diffusive instability. J .  Fluid Mech. 49, 279-288. 
HART, J. E. 1973 Finite amplitude sideways diffusive convection. J .  Fluid Mech. 59, 47-64. 
HOLYER, J. Y. 1983 Double-diffusive interleaving due to horizontal gradients. J .  Fluid Mech. 137, 

HOLYER, J. Y., JONES, T. J., PRIESTLY, M. G. & WILLIAMS, N. C. 1987 The effect of vertical temperature 

HUPPERT, H. E. & JOSBERGER, E. G. 1980 The melting of ice in cold stratified water. J. Phys. Oceanogr. 

HUPPERT, H. E. & TURNER, J. S. 1980 Ice blocks melting into a salinity gradient. J .  Fluid Mech. 100, 

due to lateral heating. Intl J .  Heat Mass Transfer 14, 57-65. 

inclined slot. J. Fluid Mech. 83, 83-95. 

wall. Intl J. Heat Mass Transfer 17, 51-60. 

salinity gradient. Deep-sea Res. 33, 305-322. 

347-362. 

and salinity gradients on double-diffusive interleaving. Deep-sea Res. 34, 517-530. 

10,953-960. 

367-384. 



3 70 0. S .  Kerr 

KERR, 0. S. 1989 Heating a salinity gradient from a vertical sidewall: linear theory. J. Fluid Mech. 

KERR, 0. S .  1990 Heating a salinity gradient from a vertical sidewall: nonlinear theory. J.  Fluid 

KERR, 0,s. & HOLYER, J.Y. 1986 The effect of rotation on double-diffusive interleaving. J.Fluid 

LINDEN, P.F. & WEBER, J.E. 1977 The formation of layers in a double-diffusive system with a 

207, 323-352. 

Mech. 217, 529-546. 

Mech. 162, 23-33. 

sloping boundary. J .  Fluid Mech. 81, 757-773. 
MCDOUGALL, T. J. 1985 Double-diffusive interleaving I. Linear stability analysis. J.  Phys. Oceanogr. 

15, 1532-1541. 
NIINO, H. 1986 A linear theory of double-diffusive horizontal intrusions in a temperature-salinity 

PALIWAL, R. C. & CHEN, C. F. 1980 Double-diffusive instability in an'inclined fluid layer. Part 2. 

F'EARLSTEIN, A. J. 1981 Effect of rotation on the stability of a doubly diffusive fluid layer. J.  Fluid 

POSMENTIER, E.S. & HIBBARD, C.B. 1982 The role of tilt in double-diffusive interleaving. 

RAYLEIGH, LORD 1883 Investigation of the character of the equilibrium of an incompressible heavy 

RUDDICK, B. R. 1992 Intrusive mixing in a Mediterranean salt lens - Intrusion slopes and dynamical 

RUDDICK, B. R. & TURNER, J. S. 1979 The vertical length scale of double-diffusive intrusions. Deep- 

SCHLADOW, S. G., THOMAS, E. & KOSEFF, J. R. 1992 The dynamics of intrusions into a thermohaline 

STERN, M. E. 1967 Lateral mixing of water masses. Deep-sea Res. 14, 747-753. 
TANNY, J. & TSINOBER, A. B. 1988 The dynamics and structure of double-diffusive layers in sidewall- 

TANNY, J. & TSINOBER, A. B. 1989 On the behaviour of a system of double diffusive layers during 

"GAM, S., ZEBIB, A. & CHEN, C. F. 198 1 Transition from shear to sideways diffusive instability 

THORPE, S. A., H m ,  P. K. & SOULSBY, R. 1969 The effects of horizontal gradients on thermohaline 

TOOLE, J.M. & GEORGI, D.T. 1981 On the dynamics and effects of double-diffusively driven 

TSITVERBLIT, N. & KIT, E. 1993 The multiplicity of steady flows in confined double-diffusive 

WALSH, D. & RUDDICK, B. R. 1995 Double-diffusive interleaving: the influence of non-constant 

WORTHEM, S., MOLLO-CHRISTENSEN, E. & OSTAPOFF, F. 1983 Effects of rotation and shear on doubly 

YOSHIDA, J., NAGASHIMA, H. & NIINO, H. 1989 The behaviour of double-diffusive intrusions in a 

front. J. Fluid Mech. 171, 71-100. 

Stability analysis. J .  Fluid Mech. 98, 769-785. 

Mech. 103, 389-412. 

J .  Geophys. Res. 87, 5 18-524. 

fluid of variable density. Proc. Lond. Math. SOC. 14, 17C177. 

mechanisms. J. Phys. Oceanogr. 22, 1274-1285. 

Sea Res. 26, 903-913. 

stratification. J.  Fluid Mech. 236, 127-165. 

heating experiments. J.  Fluid Mech. 196, 135-156. 

its evolution. Phys. Fluids A 1, 606-609. 

in a vertical slot. J. Fluid Mech. 112, 151-160. 

convection. J. Fluid Mech. 38, 375-400. 

intrusions. Prog. Oceanogr. 10, 123-145. 

convection with lateral heating. Phys. Fluids A 5, 1062-1064. 

diffusivities. J. Phys. Oceanogr. 25, 348-358. 

diffusive instability. J. Fluid Mech. 133, 297-319. 

rotating system. J. Geophys. Res. 94, 42934937. 




